GetSET Javascript p. 3

GetSET 2010 JavaScript Workshop

Welcome to the GetSET Javascript workshop!

EXERCISE 1: Who Uses Javascript?

We’ll start out by searching the net for examples of Javascript. Go to some of your favorite web pages, and View->Page Source. Do they use any Javascript? Look for <script type="text/javascript">.

Can you tell anything about how they’re using Javascript, or what the Javascript is doing?

EXERCISE 2: Learning HTML

Find the GetSET exercises folder on your computer:

Go to Start->My computer, find C: there and double-click it. Go to Temp, then GETSET, then javascript-getset. (Keep this window up – you'll be using it throughout the day.)

Look for a file called first-page.html. That's the file you'll be using for Exercise 2.

To open a file in Wordpad:

 Right-click on the icon and select Open with...
 Then choose Wordpad from the menu of choices.

Change it to show your name and your favorite color. You can change other things in the page too, if you want.

How to test an HTML web page

To test an HTML file, you need to open it in a browser.
We'll be using Firefox as our browser today. If it's not already running, start it now.

Then find your file in the exercises folder and drag that file into the Firefox window.

Once you've loaded a file in Firefox, if you make more changes to it, you can test it again by clicking Firefox' Reload button if you keep Wordpad and Firefox both running at the same time.

EXERCISE 3: Your First Javascript Page

Look for a file called first-js.html. That's the file you'll be using for Exercise 3.

Open the file in Wordpad.

Find the Javascript: it's the part between <script type="text/javascript"> and </script>.

Find the alert line, and remove the // at the beginning of it (uncomment it).

Save the file to disk! File -> Save.

How to test a Javascript program

Testing your Javascript program is a lot like testing your web page in the last exercise.: you need to open it in a browser.Find your file in exercises and drag that file into the Firefox window.

Once you've loaded a file in Firefox, if you make more changes, test it again by clicking Reload.

EXERCISE 4: Change Your Alert

For this exercise, go back to the Wordpad window.
Change the text inside the alert to say something else. It can say anything you want!

Just be sure it starts and ends with " (double quotes).

Remember to Save the file after you've changed it!

Since Firefox is already pointing at your page, to test it, just click Reload.

The Error Console

Open the Firefox Error Console: Tools -> Error Console.

If it's full of errors, press Clear.

Try typing some commands in the text area at the top.

Try a math command, like 2 + 3
Or try an alert, like alert("Hi there!");

Now try typing some lines that are definitely errors, such as:

alert("Hi!);

What happens?

Why is this an error? Do you see a problem with it?

EXERCISE 5: Using variables

Go back to your first-js.html file in Wordpad. Add a variable to store your name, and change the alert to use the variable and show your name.

EXERCISE 6: Prompt for Background Colors

Find change-color.html in the exercises folder. Open it in Firefox and in Wordpad.

Find the place where newbackground is set to yellow. Replace that line with a prompt to ask the user what color she likes.

NOTE: Web browsers don't understand a lot of colors. Stick to simple ones like red, blue, orange, pink, not complicated ones like burnt sienna or chartreuse. But sometimes you can add "light", e.g. lightblue.

Try some and see – nothing bad happens if you choose a color the browser doesn't know about.

EXERCISE 7: Using Array Loops to Change Page Color

Find change-color-loop.html in the exercises folder, and open it in Firefox and Wordpad.

This has an array called colors[] already defined, but it only has a few colors in it. Add some more colors there. (Keep them simple, like “red” or “yellow”, not “chartreuse” or “burnt sienna”.)

Then add a for() loop (see the example in the quick reference) to loop over the color list and write one line for each color in turn. You can call the writeInColor() function, and pass in the string you want to write, and the color: e.g.

 writeInColor("here is a string", color);

Tip: If you include “
” at the end of your string, you can have each color string on a line by itself. br in HTML stands for “break”, as in “line break”.

Bonus: If you finish that and have time left over, try writing the color name as part of the string, e.g. instead of writing “Here is a string”, write “Here is a green string”.

EXERCISE 8: Change to Different Flowers

Open growflowers.html in Firefox and try running it. Pretty boring, with only one flower, right?

Your task is to make it change to a different flower each time.

Suppose, instead of just flower1.gif, you also have files named flower2.gif, flower3.gif all the way up to flower10.gif. (They're in exercises\flowerpix.)

How would you change the code in the addFlower() function so that it changes to a different flower each time you click?

You can't use a for loop for this, because addFlower() is called separately for each flower (that's so you get flowers appearing one by one instead of all ad once).

Try following the number in sequence (start at 1, then go to 2, etc.)

Bonus: Can you see how to make them appear faster or slower?
Bonus2: Try using a random number (copy the code from your hangman or number-guessing game).
Bonus 3: Try using images from your own web site or a friend's (but in real life, be careful about using someone else's images on your website – it's rude, plus they might change without you knowing!)

EXERCISE 9: Make the flower jump

Open flowerjump.html.

Your task is to write the code that figures out whether the user clicked on the flower. If they click anywhere else, you don't want to do anything.

The important code is inside handleClick(). The click happens at a specific (x, y) coordinate on the page: you can get that coordinate with event.clientX and event.clientY.

The flower is also at a specific (x, y) coordinate on the page. You can get the coordinates of the top and left of the flower image with:

 var flowerLeft = parseInt(img.style.left);
 var flowerTop = parseInt(img.style.top);

(this part has already been done for you).

Your job is to compare the two sets of coordinates to find out whether the mouse click was in the right place – was the click somewhere where it would be more or less inside the flower? You can assume that a flower is roughly 200 pixels high and 200 pixels wide – it doesn't matter if that isn't exact as long as you get fairly close.

BONUS EXERCISE 10:

(If there’s extra time)

Make a copy of your flowerjump.html file, and change it so that it uses an array of image names, instead of building up the name like you did in Exercises 8 and 9.

Hint: Remember that arrays start at 0, not 1. So you’ll need to change whichflower like this:

var whichflower = parseInt(Math.random() * 10);

Then define an array just like you did for colors, with flower names like “flowerpix/flower1.gif".

What’s the advantage of doing it this way? One big advantage: you can put URLs to any picture on the web, not just the flower pictures here. Try adding some pictures of your own, from flickr or facebook or wherever!

BONUS EXERCISE 11: Number Guessing Game

(If there’s lots of extra time)

Open the file called numberguess.html.

This is mostly the same as the number guessing program you saw in class, but you have to write two parts of it.

FIRST: Ask the user for a number.

SECOND: There is already some Javascript there to check whether the user's number is too low. Your job is to add similar checks for whether it's too high or exactly right.

Bonus: If you finish early and have time left over, think of some ways you could improve your number guessing game. How about making it choose a number between 1 and 100, or asking the user how big a number it should choose?

HANGMAN GAME EXERCISES

With what you know now about programming, make a list of what a hangman game program would need to do. As you work through the exercises, see if you can find the code that does the various things on your list.

EXERCISE 12: Add Words

Open hangman.html.

Find the Word List, and add at least 6 new words to the list. You choose the words!

You can remove the words that are there, if you want.

It's okay to hit return in between words and make several short lines instead of one long line (that makes the list easier to read).

You won't be able to test your work in this exercise, so move on to Exercise 10.

EXERCISE 13: Display Underscores

A Hangman game has to display the right number of underscores, one for each letter in theword, the word you're trying to guess. If the word is “fish”, then it has to show _ _ _ _, four underscores.

Your job is to write Javascript in showWord() that will do that.

Testing hint: You'll be able to see whether your word has any underscores, but since you don't know which word it picked, you won't know if the number is right. If you want to test that for sure, stick in an alert(myword) just after your Javascript that creates the underscores.

EXERCISE 14:

In matchLetter(), we have to search theword to see if the letter the user guessed is in it anywhere. (It might even be there more than once.) Remember, userguess is a variable with a bunch of underscores anywhere the user hasn't guessed the letter yet, so it might look something like “__a_a__t_”.

The Javascript split function takes a word and splits it into an array of letters (that part is already done for you). Your job is to examine that array, find places the new letter occurs, and replace the underscore there with the letter.

While you're doing that, if you find a match, set matched to true. That will tell us whether the user chose a letter that was in the word – otherwise she gets another piece drawn on her hangman!

But wait! There's one more part to this exercise. Down near the end of matchLetter(), the program checks to see if the user won. But what if she lost (all 6 parts on the hangman are drawn)? Write some code for that case. Use a confirm dialog, just like in the case where she wins, but with a different message, and then call newGame() and return the same way as in the case where she wins.

Now you have a complete working Hangman game!

